

Process

- Architecture Workgroup Results of 3d ICNS Workshop Reviewed
- Architecture and Network Subproject
 Plans reviewed
 - Feedback solicited at large from entire group
 - Feedback solicited individually
 - Broad discussion themes

Discussion Topics

- Vision and Strategic Direction
 - Vision that defines end state needed to provide context for program and its elements
 - E.G. vision; 3 times current capacity etc
 - Identification of requirements current CNS will not meet; value of network-centric architecture (info. sharing) must be described
 - Discussion on underlining CNS infrastructure to support autonomous requirements
 - Problem statements not sufficiently scoped; too broad

Discussion Topics (cont.)

Approach

- CNS architecture must be tied into overall 'Enterprise', high level architecture (includes application requirements)
- What drives CNS Project > Requirements vs Technology
- Effective and detailed requirements analysis is critical; not an area to short-change
- Conduct technology based approach in parallel w. requirements
- Leverage advancements in ground based systems/architecture;
 minimize aircraft equipage
- Comprehensive standards effort will be needed
- Tie in to RTCA Conops; requirements of DHS and DoD
- Important to have good business case/CBA
- Opportunity for value engineering for architecture
- Technology roadmap needed
- Leverage efforts in TCA and Space Initiatives

Discussion Topics (cont.)

Security

- Architecture needs to address security
- Challenge to provide secure data in 'real-time'
- Integrity of information; monitoring intrusion detection
- Leverage commercial based technologies and systems (eg commercial banking industry)

Integration of CNS systems

- Risks need to be identified
- 'Hidden attributes of current 'stove-piped' systems
 - e.g. redundancy, no single point of failure, graceful degradation
- Information sharing to maximum extent possible; more information available leads to additional benefits
- Sensor fusion and integration to provide situational awareness

Discussion Topics (cont)

Transition

- Acknowledgement very slow process
- Recognizes existing NAS architecture planning provides for future evolution
- 'Human element' drives slow change
- Minimalist approach critical for aircraft users
- Wireless Implementation for Surface Apps

Architecture Validation

- Extensive large scale modeling and simulation needed
- Partner with DFRC for testing and demonstration

Technologies

- QoS, security and encryption technologies
- GRC should get involved in GPS-3
- 3G Wireless; partner with manufacturers and service providers

Additional Comments

- Academia working on low TRL studies focusing on modeling/simulation of topologies and traffic patterns for various applications requirements ... top-down approach
- Industry approaches that address security, economy, integration through use of hybrid communications architectures
- Excellent tools for architecture modeling and development exist
- Set up mailing list for ongoing discussion

Key Deliverables

- Validated CNS Architecture that supports future NAS Infrastructure Vision
 - Validated range of CONOPS
 - Large-scale Simulation and Emulation
 - High level system requirements for future NAS technology development
- Integrated technology Roadmap tied to other architecture and planning initiatives